home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
You can browse this item here: imappt-sample.tex
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
100%
| dexvert
| Texinfo Document (document/texInfo)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Croteam texture file (image/croteamTextureFile)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX document text
| default
| |
99%
| file
| TeX document, ASCII text
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 6d 61 67 6e 69 66 69 | 63 61 74 69 6f 6e 3d 5c |\magnifi|cation=\|
|00000010| 6d 61 67 73 74 65 70 31 | 0a 5c 69 6e 70 75 74 20 |magstep1|.\input |
|00000020| 61 6d 73 74 65 78 0a 5c | 64 6f 63 75 6d 65 6e 74 |amstex.\|document|
|00000030| 73 74 79 6c 65 7b 69 6d | 61 70 70 74 7d 0a 25 25 |style{im|appt}.%%|
|00000040| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000050| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000060| 25 0a 25 20 4d 61 63 72 | 6f 73 20 73 70 65 63 69 |%.% Macr|os speci|
|00000070| 66 69 63 20 74 6f 20 74 | 68 69 73 20 70 61 70 65 |fic to t|his pape|
|00000080| 72 20 20 20 25 0a 5c 64 | 65 66 69 6e 65 5c 42 62 |r %.\d|efine\Bb|
|00000090| 62 52 7b 7b 5c 42 62 62 | 20 52 7d 7d 20 20 20 20 |bR{{\Bbb| R}} |
|000000a0| 20 20 20 20 20 20 20 20 | 25 0a 5c 64 65 66 69 6e | |%.\defin|
|000000b0| 65 5c 6c 6f 6e 65 72 7b | 7b 4c 5e 31 28 5c 42 62 |e\loner{|{L^1(\Bb|
|000000c0| 62 52 29 7d 7d 20 20 20 | 20 20 20 20 25 0a 5c 64 |bR)}} | %.\d|
|000000d0| 65 66 69 6e 65 5c 6c 69 | 6e 66 72 7b 7b 4c 5e 5c |efine\li|nfr{{L^\|
|000000e0| 69 6e 66 74 79 28 5c 42 | 62 62 52 29 7d 7d 20 20 |infty(\B|bbR)}} |
|000000f0| 25 0a 5c 64 65 66 69 6e | 65 5c 62 76 72 7b 7b 42 |%.\defin|e\bvr{{B|
|00000100| 56 28 5c 42 62 62 52 29 | 7d 7d 20 20 20 20 20 20 |V(\BbbR)|}} |
|00000110| 20 20 20 20 25 0a 5c 64 | 65 66 69 6e 65 5c 54 56 | %.\d|efine\TV|
|00000120| 7b 7b 5c 72 6f 6d 61 6e | 20 7b 54 56 7d 7d 7d 20 |{{\roman| {TV}}} |
|00000130| 20 20 20 20 20 20 20 20 | 25 0a 5c 64 65 66 69 6e | |%.\defin|
|00000140| 65 5c 73 64 6f 74 7b 5c | 2c 5c 63 64 6f 74 5c 2c |e\sdot{\|,\cdot\,|
|00000150| 7d 20 20 20 20 20 20 20 | 20 20 20 20 25 0a 25 25 |} | %.%%|
|00000160| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000170| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000180| 25 0a 5c 74 6f 70 6d 61 | 74 74 65 72 0a 5c 74 69 |%.\topma|tter.\ti|
|00000190| 74 6c 65 0a 41 20 53 41 | 4d 50 4c 45 20 50 41 50 |tle.A SA|MPLE PAP|
|000001a0| 45 52 20 54 4f 20 49 4c | 4c 55 53 54 52 41 54 45 |ER TO IL|LUSTRATE|
|000001b0| 20 54 48 45 20 5c 5c 0a | 49 4d 41 20 50 52 45 50 | THE \\.|IMA PREP|
|000001c0| 52 49 4e 54 20 53 54 59 | 4c 45 5c 66 6f 6f 74 6e |RINT STY|LE\footn|
|000001d0| 6f 74 65 22 2a 22 7b 55 | 6e 6c 69 6b 65 6c 79 20 |ote"*"{U|nlikely |
|000001e0| 74 6f 20 61 70 70 65 61 | 72 2e 7d 0a 5c 65 6e 64 |to appea|r.}.\end|
|000001f0| 74 69 74 6c 65 0a 5c 61 | 75 74 68 6f 72 0a 42 52 |title.\a|uthor.BR|
|00000200| 41 44 4c 45 59 20 4a 2e | 20 4c 55 43 49 45 52 5c |ADLEY J.| LUCIER\|
|00000210| 66 6f 6f 74 6e 6f 74 65 | 22 5c 64 61 67 22 7b 44 |footnote|"\dag"{D|
|00000220| 65 70 61 72 74 6d 65 6e | 74 20 6f 66 20 4d 61 74 |epartmen|t of Mat|
|00000230| 68 65 6d 61 74 69 63 73 | 2c 20 50 75 72 64 75 65 |hematics|, Purdue|
|00000240| 20 55 6e 69 76 65 72 73 | 69 74 79 2c 0a 57 65 73 | Univers|ity,.Wes|
|00000250| 74 20 4c 61 66 61 79 65 | 74 74 65 2c 20 49 6e 64 |t Lafaye|tte, Ind|
|00000260| 69 61 6e 61 20 34 37 39 | 30 37 2e 0a 54 68 65 20 |iana 479|07..The |
|00000270| 77 6f 72 6b 20 6f 66 20 | 74 68 65 20 66 69 72 73 |work of |the firs|
|00000280| 74 20 61 75 74 68 6f 72 | 20 77 61 73 20 6e 6f 74 |t author| was not|
|00000290| 20 73 75 70 70 6f 72 74 | 65 64 20 62 79 20 74 68 | support|ed by th|
|000002a0| 65 0a 57 6f 6c 66 20 46 | 6f 75 6e 64 61 74 69 6f |e.Wolf F|oundatio|
|000002b0| 6e 2e 0a 7d 20 61 6e 64 | 0a 44 4f 55 47 4c 41 53 |n..} and|.DOUGLAS|
|000002c0| 20 4e 2e 20 41 52 4e 4f | 4c 44 5c 66 6f 6f 74 6e | N. ARNO|LD\footn|
|000002d0| 6f 74 65 22 5c 64 64 61 | 67 22 7b 44 65 70 61 72 |ote"\dda|g"{Depar|
|000002e0| 74 6d 65 6e 74 20 6f 66 | 20 4d 61 74 68 65 6d 61 |tment of| Mathema|
|000002f0| 74 69 63 73 2c 20 55 6e | 69 76 65 72 73 69 74 79 |tics, Un|iversity|
|00000300| 0a 6f 66 20 4d 61 72 79 | 6c 61 6e 64 2c 20 43 6f |.of Mary|land, Co|
|00000310| 6c 6c 65 67 65 20 50 61 | 72 6b 2c 20 4d 61 72 79 |llege Pa|rk, Mary|
|00000320| 6c 61 6e 64 20 32 30 37 | 34 32 2e 7d 0a 5c 65 6e |land 207|42.}.\en|
|00000330| 64 61 75 74 68 6f 72 0a | 5c 61 62 73 74 72 61 63 |dauthor.|\abstrac|
|00000340| 74 7b 54 68 69 73 20 6e | 6f 6e 73 65 6e 73 65 20 |t{This n|onsense |
|00000350| 70 61 70 65 72 20 65 78 | 65 6d 70 6c 69 66 69 65 |paper ex|emplifie|
|00000360| 73 20 74 68 65 20 49 4d | 41 20 70 72 65 70 72 69 |s the IM|A prepri|
|00000370| 6e 74 20 73 74 79 6c 65 | 20 66 69 6c 65 20 66 6f |nt style| file fo|
|00000380| 72 20 5c 41 6d 53 54 65 | 58 5c 2c 0a 69 6d 61 70 |r \AmSTe|X\,.imap|
|00000390| 70 74 2e 73 74 79 2e 0a | 54 68 65 20 49 4d 41 20 |pt.sty..|The IMA |
|000003a0| 70 72 65 70 72 69 6e 74 | 20 73 74 79 6c 65 20 66 |preprint| style f|
|000003b0| 69 6c 65 2c 20 77 68 69 | 63 68 20 0a 69 73 20 75 |ile, whi|ch .is u|
|000003c0| 73 65 64 20 62 79 20 74 | 68 65 20 49 6e 73 74 69 |sed by t|he Insti|
|000003d0| 74 75 74 65 20 66 6f 72 | 20 4d 61 74 68 65 6d 61 |tute for| Mathema|
|000003e0| 74 69 63 73 0a 61 6e 64 | 20 69 74 73 20 41 70 70 |tics.and| its App|
|000003f0| 6c 69 63 61 74 69 6f 6e | 73 20 66 6f 72 20 69 74 |lication|s for it|
|00000400| 73 20 70 72 65 70 72 69 | 6e 74 73 2c 0a 69 73 20 |s prepri|nts,.is |
|00000410| 6f 66 66 65 72 65 64 20 | 61 73 20 61 20 67 65 6e |offered |as a gen|
|00000420| 65 72 61 6c 20 70 75 72 | 70 6f 73 65 20 70 72 65 |eral pur|pose pre|
|00000430| 70 72 69 6e 74 20 73 74 | 79 6c 65 20 66 6f 72 20 |print st|yle for |
|00000440| 6d 61 74 68 65 6d 61 74 | 69 63 61 6c 20 70 61 70 |mathemat|ical pap|
|00000450| 65 72 73 2e 0a 49 74 20 | 69 73 20 61 20 6d 6f 64 |ers..It |is a mod|
|00000460| 69 66 69 63 61 74 69 6f | 6e 20 6f 66 20 74 68 65 |ificatio|n of the|
|00000470| 20 61 6d 73 70 70 74 20 | 73 74 79 6c 65 20 6f 66 | amsppt |style of|
|00000480| 0a 4d 69 63 68 61 65 6c | 20 53 70 69 76 61 6b 2e |.Michael| Spivak.|
|00000490| 20 20 54 68 69 73 20 70 | 61 70 65 72 20 61 6c 73 | This p|aper als|
|000004a0| 6f 20 73 65 72 76 65 73 | 20 74 6f 20 69 6c 6c 75 |o serves| to illu|
|000004b0| 73 74 72 61 74 65 20 6d | 61 6e 79 20 6f 66 20 74 |strate m|any of t|
|000004c0| 68 65 20 61 6d 73 74 65 | 78 0a 6d 61 63 72 6f 73 |he amste|x.macros|
|000004d0| 20 61 73 20 75 73 65 64 | 20 77 69 74 68 20 74 68 | as used| with th|
|000004e0| 65 20 69 6d 61 70 70 74 | 20 73 74 79 6c 65 20 66 |e imappt| style f|
|000004f0| 69 6c 65 2e 7d 0a 0a 5c | 6b 65 79 77 6f 72 64 73 |ile.}..\|keywords|
|00000500| 7b 70 6f 72 6f 75 73 20 | 6d 65 64 69 75 6d 2c 20 |{porous |medium, |
|00000510| 69 6e 74 65 72 66 61 63 | 65 20 63 75 72 76 65 73 |interfac|e curves|
|00000520| 7d 0a 5c 73 75 62 6a 63 | 6c 61 73 73 7b 36 35 4e |}.\subjc|lass{65N|
|00000530| 36 30 7d 0a 5c 65 6e 64 | 74 6f 70 6d 61 74 74 65 |60}.\end|topmatte|
|00000540| 72 0a 5c 64 6f 63 75 6d | 65 6e 74 0a 5c 73 75 62 |r.\docum|ent.\sub|
|00000550| 68 65 61 64 69 6e 67 7b | 31 2e 20 49 6e 74 72 6f |heading{|1. Intro|
|00000560| 64 75 63 74 69 6f 6e 7d | 0a 57 65 20 61 72 65 20 |duction}|.We are |
|00000570| 63 6f 6e 63 65 72 6e 65 | 64 20 77 69 74 68 20 6e |concerne|d with n|
|00000580| 75 6d 65 72 69 63 61 6c | 20 61 70 70 72 6f 78 69 |umerical| approxi|
|00000590| 6d 61 74 69 6f 6e 73 20 | 74 6f 20 74 68 65 20 73 |mations |to the s|
|000005a0| 6f 2d 63 61 6c 6c 65 64 | 0a 70 6f 72 6f 75 73 2d |o-called|.porous-|
|000005b0| 6d 65 64 69 75 6d 20 65 | 71 75 61 74 69 6f 6e 20 |medium e|quation |
|000005c0| 5c 63 69 74 65 7b 35 7d | 2c 0a 24 24 0a 5c 61 6c |\cite{5}|,.$$.\al|
|000005d0| 69 67 6e 65 64 61 74 32 | 0a 20 20 26 75 5f 74 3d |ignedat2|. &u_t=|
|000005e0| 5c 70 68 69 28 75 29 5f | 7b 78 78 7d 2c 26 26 5c |\phi(u)_|{xx},&&\|
|000005f0| 71 71 75 61 64 20 78 5c | 69 6e 5c 42 62 62 52 2c |qquad x\|in\BbbR,|
|00000600| 5c 71 75 61 64 20 74 3e | 30 2c 5c 71 75 61 64 5c |\quad t>|0,\quad\|
|00000610| 70 68 69 28 75 29 3d 75 | 5e 6d 2c 5c 71 75 61 64 |phi(u)=u|^m,\quad|
|00000620| 20 6d 3e 31 2c 0a 5c 5c | 0a 20 20 26 75 28 78 2c | m>1,.\\|. &u(x,|
|00000630| 30 29 3d 75 5f 30 28 78 | 29 2c 26 26 5c 71 71 75 |0)=u_0(x|),&&\qqu|
|00000640| 61 64 20 78 5c 69 6e 5c | 42 62 62 52 2e 0a 5c 65 |ad x\in\|BbbR..\e|
|00000650| 6e 64 61 6c 69 67 6e 65 | 64 61 74 0a 5c 74 61 67 |ndaligne|dat.\tag|
|00000660| 20 31 2e 31 0a 24 24 0a | 57 65 20 61 73 73 75 6d | 1.1.$$.|We assum|
|00000670| 65 20 74 68 61 74 20 74 | 68 65 20 69 6e 69 74 69 |e that t|he initi|
|00000680| 61 6c 20 64 61 74 61 20 | 24 75 5f 30 28 78 29 24 |al data |$u_0(x)$|
|00000690| 20 68 61 73 20 62 6f 75 | 6e 64 65 64 20 73 75 70 | has bou|nded sup|
|000006a0| 70 6f 72 74 2c 20 74 68 | 61 74 0a 24 30 5c 6c 65 |port, th|at.$0\le|
|000006b0| 71 20 75 5f 30 5c 6c 65 | 71 20 4d 24 2c 20 61 6e |q u_0\le|q M$, an|
|000006c0| 64 20 74 68 61 74 20 24 | 5c 70 68 69 28 75 5f 30 |d that $|\phi(u_0|
|000006d0| 29 5f 78 5c 69 6e 5c 62 | 76 72 24 2e 0a 49 74 20 |)_x\in\b|vr$..It |
|000006e0| 69 73 20 77 65 6c 6c 20 | 6b 6e 6f 77 6e 20 74 68 |is well |known th|
|000006f0| 61 74 20 61 20 75 6e 69 | 71 75 65 20 73 6f 6c 75 |at a uni|que solu|
|00000700| 74 69 6f 6e 20 24 75 28 | 78 2c 74 29 24 20 6f 66 |tion $u(|x,t)$ of|
|00000710| 20 28 31 2e 31 29 20 65 | 78 69 73 74 73 2c 0a 61 | (1.1) e|xists,.a|
|00000720| 6e 64 20 74 68 61 74 20 | 24 75 24 20 73 61 74 69 |nd that |$u$ sati|
|00000730| 73 66 69 65 73 0a 24 24 | 0a 20 20 30 5c 6c 65 71 |sfies.$$|. 0\leq|
|00000740| 20 75 5c 6c 65 71 20 4d | 5c 74 65 78 74 7b 20 61 | u\leq M|\text{ a|
|00000750| 6e 64 20 7d 5c 54 56 5c | 70 68 69 28 75 28 5c 2c |nd }\TV\|phi(u(\,|
|00000760| 5c 63 64 6f 74 5c 2c 2c | 74 29 29 5f 78 5c 6c 65 |\cdot\,,|t))_x\le|
|00000770| 71 5c 54 56 5c 70 68 69 | 28 75 5f 30 29 5f 78 2e |q\TV\phi|(u_0)_x.|
|00000780| 0a 5c 74 61 67 20 31 2e | 32 0a 24 24 0a 49 66 20 |.\tag 1.|2.$$.If |
|00000790| 74 68 65 20 64 61 74 61 | 20 68 61 73 20 73 6c 69 |the data| has sli|
|000007a0| 67 68 74 6c 79 20 6d 6f | 72 65 20 72 65 67 75 6c |ghtly mo|re regul|
|000007b0| 61 72 69 74 79 2c 20 74 | 68 65 6e 20 74 68 69 73 |arity, t|hen this|
|000007c0| 20 74 6f 6f 20 69 73 20 | 73 61 74 69 73 66 69 65 | too is |satisfie|
|000007d0| 64 0a 62 79 20 74 68 65 | 20 73 6f 6c 75 74 69 6f |d.by the| solutio|
|000007e0| 6e 2e 20 53 70 65 63 69 | 66 69 63 61 6c 6c 79 2c |n. Speci|fically,|
|000007f0| 20 69 66 20 24 6d 24 20 | 69 73 20 6e 6f 20 67 72 | if $m$ |is no gr|
|00000800| 65 61 74 65 72 20 74 68 | 61 6e 20 74 77 6f 20 61 |eater th|an two a|
|00000810| 6e 64 0a 24 75 5f 30 24 | 20 69 73 20 4c 69 70 73 |nd.$u_0$| is Lips|
|00000820| 63 68 69 74 7a 20 63 6f | 6e 74 69 6e 75 6f 75 73 |chitz co|ntinuous|
|00000830| 2c 20 74 68 65 6e 20 24 | 75 28 5c 2c 5c 63 64 6f |, then $|u(\,\cdo|
|00000840| 74 5c 2c 2c 74 29 24 20 | 69 73 20 61 6c 73 6f 20 |t\,,t)$ |is also |
|00000850| 4c 69 70 73 63 68 69 74 | 7a 3b 0a 69 66 20 24 6d |Lipschit|z;.if $m|
|00000860| 24 20 69 73 20 67 72 65 | 61 74 65 72 20 74 68 61 |$ is gre|ater tha|
|00000870| 6e 20 74 77 6f 20 61 6e | 64 20 24 28 75 5f 30 5e |n two an|d $(u_0^|
|00000880| 7b 6d 2d 31 7d 29 5f 78 | 5c 69 6e 5c 6c 69 6e 66 |{m-1})_x|\in\linf|
|00000890| 72 24 2c 20 74 68 65 6e | 0a 24 28 75 28 5c 2c 5c |r$, then|.$(u(\,\|
|000008a0| 63 64 6f 74 5c 2c 2c 74 | 29 5e 7b 6d 2d 31 7d 29 |cdot\,,t|)^{m-1})|
|000008b0| 5f 78 5c 69 6e 5c 6c 69 | 6e 66 72 24 20 0a 28 73 |_x\in\li|nfr$ .(s|
|000008c0| 65 65 20 5b 33 5d 29 2e | 20 28 54 68 69 73 20 77 |ee [3]).| (This w|
|000008d0| 69 6c 6c 20 66 6f 6c 6c | 6f 77 20 66 72 6f 6d 20 |ill foll|ow from |
|000008e0| 72 65 73 75 6c 74 73 20 | 70 72 65 73 65 6e 74 65 |results |presente|
|000008f0| 64 20 68 65 72 65 2c 20 | 61 6c 73 6f 2e 29 0a 57 |d here, |also.).W|
|00000900| 65 20 61 6c 73 6f 20 75 | 73 65 20 74 68 65 20 66 |e also u|se the f|
|00000910| 61 63 74 20 74 68 61 74 | 20 74 68 65 20 73 6f 6c |act that| the sol|
|00000920| 75 74 69 6f 6e 20 24 75 | 24 20 69 73 20 48 5c 22 |ution $u|$ is H\"|
|00000930| 6f 6c 64 65 72 20 63 6f | 6e 74 69 6e 75 6f 75 73 |older co|ntinuous|
|00000940| 20 69 6e 20 24 74 24 2e | 0a 0a 5c 73 75 62 68 65 | in $t$.|..\subhe|
|00000950| 61 64 69 6e 67 7b 32 2e | 20 24 5c 6c 69 6e 66 72 |ading{2.| $\linfr|
|00000960| 24 20 65 72 72 6f 72 20 | 62 6f 75 6e 64 73 7d 0a |$ error |bounds}.|
|00000970| 41 66 74 65 72 20 61 20 | 73 69 6d 70 6c 65 20 64 |After a |simple d|
|00000980| 65 66 69 6e 69 74 69 6f | 6e 2c 20 77 65 20 73 74 |efinitio|n, we st|
|00000990| 61 74 65 20 61 20 74 68 | 65 6f 72 65 6d 0a 74 68 |ate a th|eorem.th|
|000009a0| 61 74 20 65 78 70 72 65 | 73 73 65 73 20 74 68 65 |at expre|sses the|
|000009b0| 20 65 72 72 6f 72 20 6f | 66 20 61 70 70 72 6f 78 | error o|f approx|
|000009c0| 69 6d 61 74 69 6f 6e 73 | 20 24 75 5e 68 24 20 69 |imations| $u^h$ i|
|000009d0| 6e 0a 74 65 72 6d 73 20 | 6f 66 20 74 68 65 20 77 |n.terms |of the w|
|000009e0| 65 61 6b 20 74 72 75 6e | 63 61 74 69 6f 6e 20 65 |eak trun|cation e|
|000009f0| 72 72 6f 72 20 24 45 24 | 2e 0a 5c 70 72 6f 63 6c |rror $E$|..\procl|
|00000a00| 61 69 6d 7b 44 65 66 69 | 6e 69 74 69 6f 6e 20 32 |aim{Defi|nition 2|
|00000a10| 2e 31 7d 5c 72 6d 20 41 | 20 7b 5c 69 74 20 64 65 |.1}\rm A| {\it de|
|00000a20| 66 69 6e 69 74 69 6f 6e | 7d 0a 69 73 20 74 68 65 |finition|}.is the|
|00000a30| 20 73 61 6d 65 20 61 73 | 20 61 20 74 68 65 6f 72 | same as| a theor|
|00000a40| 65 6d 20 73 65 74 20 69 | 6e 20 72 6f 6d 61 6e 0a |em set i|n roman.|
|00000a50| 74 79 70 65 2e 0a 5c 65 | 6e 64 70 72 6f 63 6c 61 |type..\e|ndprocla|
|00000a60| 69 6d 0a 5c 70 72 6f 63 | 6c 61 69 6d 7b 54 68 65 |im.\proc|laim{The|
|00000a70| 6f 72 65 6d 20 32 2e 31 | 7d 0a 4c 65 74 20 24 5c |orem 2.1|}.Let $\|
|00000a80| 7b 75 5e 68 5c 7d 24 20 | 62 65 20 61 20 66 61 6d |{u^h\}$ |be a fam|
|00000a90| 69 6c 79 20 6f 66 20 61 | 70 70 72 6f 78 69 6d 61 |ily of a|pproxima|
|00000aa0| 74 65 20 73 6f 6c 75 74 | 69 6f 6e 73 20 73 61 74 |te solut|ions sat|
|00000ab0| 69 73 66 79 69 6e 67 0a | 74 68 65 20 66 6f 6c 6c |isfying.|the foll|
|00000ac0| 6f 77 69 6e 67 20 63 6f | 6e 64 69 74 69 6f 6e 73 |owing co|nditions|
|00000ad0| 20 66 6f 72 20 24 30 5c | 6c 65 71 20 74 5c 6c 65 | for $0\|leq t\le|
|00000ae0| 71 20 54 24 3a 0a 5c 72 | 6f 73 74 65 72 0a 5c 69 |q T$:.\r|oster.\i|
|00000af0| 74 65 6d 20 46 6f 72 20 | 61 6c 6c 20 24 78 5c 69 |tem For |all $x\i|
|00000b00| 6e 5c 42 62 62 52 24 20 | 61 6e 64 20 70 6f 73 69 |n\BbbR$ |and posi|
|00000b10| 74 69 76 65 20 24 74 24 | 2c 20 24 30 5c 6c 65 71 |tive $t$|, $0\leq|
|00000b20| 20 75 5e 68 28 78 2c 74 | 29 5c 6c 65 71 20 4d 24 | u^h(x,t|)\leq M$|
|00000b30| 3b 0a 5c 69 74 65 6d 20 | 42 6f 74 68 20 24 75 24 |;.\item |Both $u$|
|00000b40| 20 61 6e 64 20 24 75 5e | 68 24 20 61 72 65 20 48 | and $u^|h$ are H|
|00000b50| 5c 22 6f 6c 64 65 72 2d | 2d 24 5c 61 6c 70 68 61 |\"older-|-$\alpha|
|00000b60| 24 20 69 6e 20 24 78 24 | 0a 66 6f 72 20 73 6f 6d |$ in $x$|.for som|
|00000b70| 65 20 24 5c 61 6c 70 68 | 61 5c 69 6e 28 30 2c 31 |e $\alph|a\in(0,1|
|00000b80| 5c 77 65 64 67 65 20 31 | 2f 28 6d 2d 31 29 29 24 |\wedge 1|/(m-1))$|
|00000b90| 3b 20 24 75 5e 68 24 20 | 69 73 20 72 69 67 68 74 |; $u^h$ |is right|
|00000ba0| 20 63 6f 6e 74 69 6e 75 | 6f 75 73 20 69 6e 20 24 | continu|ous in $|
|00000bb0| 74 24 3b 0a 61 6e 64 20 | 24 75 5e 68 24 20 69 73 |t$;.and |$u^h$ is|
|00000bc0| 20 48 5c 22 6f 6c 64 65 | 72 20 63 6f 6e 74 69 6e | H\"olde|r contin|
|00000bd0| 75 6f 75 73 20 69 6e 20 | 24 74 24 20 6f 6e 0a 73 |uous in |$t$ on.s|
|00000be0| 74 72 69 70 73 20 24 5c | 42 62 62 52 5c 74 69 6d |trips $\|BbbR\tim|
|00000bf0| 65 73 28 74 5e 6e 2c 74 | 5e 7b 6e 2b 31 7d 29 24 |es(t^n,t|^{n+1})$|
|00000c00| 2c 20 77 69 74 68 20 74 | 68 65 20 73 65 74 20 24 |, with t|he set $|
|00000c10| 5c 7b 74 5e 6e 5c 7d 24 | 20 68 61 76 69 6e 67 20 |\{t^n\}$| having |
|00000c20| 6e 6f 0a 6c 69 6d 69 74 | 20 70 6f 69 6e 74 73 3b |no.limit| points;|
|00000c30| 20 61 6e 64 0a 5c 69 74 | 65 6d 20 54 68 65 72 65 | and.\it|em There|
|00000c40| 20 65 78 69 73 74 73 20 | 61 20 70 6f 73 69 74 69 | exists |a positi|
|00000c50| 76 65 20 66 75 6e 63 74 | 69 6f 6e 20 24 5c 6f 6d |ve funct|ion $\om|
|00000c60| 65 67 61 28 68 2c 5c 65 | 70 73 69 6c 6f 6e 29 24 |ega(h,\e|psilon)$|
|00000c70| 20 73 75 63 68 20 74 68 | 61 74 3a 0a 77 68 65 6e | such th|at:.when|
|00000c80| 65 76 65 72 20 24 5c 7b | 77 5e 5c 65 70 73 69 6c |ever $\{|w^\epsil|
|00000c90| 6f 6e 5c 7d 5f 7b 30 3c | 5c 65 70 73 69 6c 6f 6e |on\}_{0<|\epsilon|
|00000ca0| 5c 6c 65 71 5c 65 70 73 | 69 6c 6f 6e 5f 30 7d 24 |\leq\eps|ilon_0}$|
|00000cb0| 20 69 73 20 61 20 66 61 | 6d 69 6c 79 20 6f 66 20 | is a fa|mily of |
|00000cc0| 66 75 6e 63 74 69 6f 6e | 73 0a 69 6e 20 24 5c 62 |function|s.in $\b|
|00000cd0| 6f 6c 64 20 58 24 20 66 | 6f 72 20 77 68 69 63 68 |old X$ f|or which|
|00000ce0| 0a 7b 5c 72 6f 73 74 65 | 72 0a 5c 69 74 65 6d 22 |.{\roste|r.\item"|
|00000cf0| 28 61 29 22 20 74 68 65 | 72 65 20 69 73 20 61 20 |(a)" the|re is a |
|00000d00| 73 65 71 75 65 6e 63 65 | 20 6f 66 20 70 6f 73 69 |sequence| of posi|
|00000d10| 74 69 76 65 20 6e 75 6d | 62 65 72 73 20 24 5c 65 |tive num|bers $\e|
|00000d20| 70 73 69 6c 6f 6e 24 20 | 74 65 6e 64 69 6e 67 0a |psilon$ |tending.|
|00000d30| 74 6f 20 7a 65 72 6f 2c | 20 73 75 63 68 20 74 68 |to zero,| such th|
|00000d40| 61 74 20 66 6f 72 20 74 | 68 65 73 65 20 20 76 61 |at for t|hese va|
|00000d50| 6c 75 65 73 20 6f 66 0a | 24 5c 65 70 73 69 6c 6f |lues of.|$\epsilo|
|00000d60| 6e 24 2c 20 24 5c 7c 77 | 5e 5c 65 70 73 69 6c 6f |n$, $\|w|^\epsilo|
|00000d70| 6e 5c 7c 5f 5c 69 6e 66 | 74 79 5c 6c 65 71 20 31 |n\|_\inf|ty\leq 1|
|00000d80| 2f 5c 65 70 73 69 6c 6f | 6e 24 2c 0a 5c 69 74 65 |/\epsilo|n$,.\ite|
|00000d90| 6d 22 28 62 29 22 20 66 | 6f 72 20 61 6c 6c 20 70 |m"(b)" f|or all p|
|00000da0| 6f 73 69 74 69 76 65 0a | 24 5c 65 70 73 69 6c 6f |ositive.|$\epsilo|
|00000db0| 6e 24 2c 20 24 5c 7c 77 | 5f 78 5e 5c 65 70 73 69 |n$, $\|w|_x^\epsi|
|00000dc0| 6c 6f 6e 28 5c 73 64 6f | 74 2c 74 29 5c 7c 5f 5c |lon(\sdo|t,t)\|_\|
|00000dd0| 6c 6f 6e 65 72 5c 6c 65 | 71 20 31 2f 5c 65 70 73 |loner\le|q 1/\eps|
|00000de0| 69 6c 6f 6e 5e 32 24 2c | 20 61 6e 64 0a 5c 69 74 |ilon^2$,| and.\it|
|00000df0| 65 6d 22 28 63 29 22 20 | 66 6f 72 20 61 6c 6c 20 |em"(c)" |for all |
|00000e00| 24 5c 65 70 73 69 6c 6f | 6e 3e 30 24 2c 20 0a 24 |$\epsilo|n>0$, .$|
|00000e10| 24 0a 5c 73 75 70 5c 53 | 62 0a 78 5c 69 6e 5c 42 |$.\sup\S|b.x\in\B|
|00000e20| 62 62 52 5c 5c 30 5c 6c | 65 71 20 74 5f 31 2c 74 |bbR\\0\l|eq t_1,t|
|00000e30| 5f 32 5c 6c 65 71 20 54 | 5c 65 6e 64 53 62 0a 5c |_2\leq T|\endSb.\|
|00000e40| 64 66 72 61 63 7b 7c 77 | 5e 5c 65 70 73 69 6c 6f |dfrac{|w|^\epsilo|
|00000e50| 6e 28 78 2c 74 5f 32 29 | 2d 77 5e 5c 65 70 73 69 |n(x,t_2)|-w^\epsi|
|00000e60| 6c 6f 6e 28 78 2c 74 5f | 31 29 7c 7d 7b 7c 74 5f |lon(x,t_|1)|}{|t_|
|00000e70| 32 2d 74 5f 31 7c 5e 70 | 7d 5c 6c 65 71 20 31 2f |2-t_1|^p|}\leq 1/|
|00000e80| 5c 65 70 73 69 6c 6f 6e | 5e 32 2c 0a 24 24 0a 77 |\epsilon|^2,.$$.w|
|00000e90| 68 65 72 65 20 24 70 24 | 20 69 73 20 73 6f 6d 65 |here $p$| is some|
|00000ea0| 20 6e 75 6d 62 65 72 20 | 6e 6f 74 20 65 78 63 65 | number |not exce|
|00000eb0| 65 64 69 6e 67 20 24 31 | 24 2c 0a 5c 65 6e 64 72 |eding $1|$,.\endr|
|00000ec0| 6f 73 74 65 72 7d 0a 74 | 68 65 6e 20 24 7c 45 20 |oster}.t|hen $|E |
|00000ed0| 28 75 5e 68 2c 77 5e 5c | 65 70 73 69 6c 6f 6e 2c |(u^h,w^\|epsilon,|
|00000ee0| 54 29 7c 5c 6c 65 71 5c | 6f 6d 65 67 61 28 68 2c |T)|\leq\|omega(h,|
|00000ef0| 5c 65 70 73 69 6c 6f 6e | 29 2e 24 0a 5c 65 6e 64 |\epsilon|).$.\end|
|00000f00| 72 6f 73 74 65 72 0a 54 | 68 65 6e 2c 20 74 68 65 |roster.T|hen, the|
|00000f10| 72 65 20 69 73 20 61 20 | 63 6f 6e 73 74 61 6e 74 |re is a |constant|
|00000f20| 20 24 43 3d 43 28 6d 2c | 4d 2c 54 29 24 20 73 75 | $C=C(m,|M,T)$ su|
|00000f30| 63 68 20 74 68 61 74 0a | 24 24 0a 5c 7c 75 2d 75 |ch that.|$$.\|u-u|
|00000f40| 5e 68 5c 7c 5f 7b 5c 69 | 6e 66 74 79 2c 5c 42 62 |^h\|_{\i|nfty,\Bb|
|00000f50| 62 52 5c 74 69 6d 65 73 | 5b 30 2c 54 5d 7d 5c 6c |bR\times|[0,T]}\l|
|00000f60| 65 71 0a 43 5c 6c 65 66 | 74 5b 0a 5c 73 75 70 20 |eq.C\lef|t[.\sup |
|00000f70| 5c 6c 65 66 74 20 7c 5c | 69 6e 74 5f 5c 42 62 62 |\left |\|int_\Bbb|
|00000f80| 52 28 75 5f 30 28 78 29 | 2d 75 5e 68 28 78 2c 30 |R(u_0(x)|-u^h(x,0|
|00000f90| 29 29 20 20 77 28 78 2c | 30 29 20 5c 2c 64 78 5c |)) w(x,|0) \,dx\|
|00000fa0| 72 69 67 68 74 7c 2b 0a | 5c 6f 6d 65 67 61 28 68 |right|+.|\omega(h|
|00000fb0| 2c 5c 65 70 73 69 6c 6f | 6e 29 2b 5c 65 70 73 69 |,\epsilo|n)+\epsi|
|00000fc0| 6c 6f 6e 5e 5c 61 6c 70 | 68 61 5c 72 69 67 68 74 |lon^\alp|ha\right|
|00000fd0| 5d 2c 0a 5c 74 61 67 20 | 32 2e 31 0a 24 24 0a 77 |],.\tag |2.1.$$.w|
|00000fe0| 68 65 72 65 20 74 68 65 | 20 73 75 70 72 65 6d 75 |here the| supremu|
|00000ff0| 6d 20 69 73 20 74 61 6b | 65 6e 20 6f 76 65 72 20 |m is tak|en over |
|00001000| 61 6c 6c 20 24 77 5c 69 | 6e 5c 62 6f 6c 64 20 58 |all $w\i|n\bold X|
|00001010| 24 2e 0a 5c 65 6e 64 70 | 72 6f 63 6c 61 69 6d 0a |$..\endp|roclaim.|
|00001020| 5c 64 65 6d 6f 7b 50 72 | 6f 6f 66 7d 4c 65 74 20 |\demo{Pr|oof}Let |
|00001030| 24 7a 24 20 62 65 20 69 | 6e 20 24 5c 62 6f 6c 64 |$z$ be i|n $\bold|
|00001040| 20 58 24 2e 20 42 65 63 | 61 75 73 65 20 24 45 28 | X$. Bec|ause $E(|
|00001050| 75 2c 5c 73 64 6f 74 2c | 5c 73 64 6f 74 29 5c 65 |u,\sdot,|\sdot)\e|
|00001060| 71 75 69 76 30 24 2c 0a | 45 71 75 61 74 69 6f 6e |quiv0$,.|Equation|
|00001070| 20 28 31 2e 35 29 20 69 | 6d 70 6c 69 65 73 20 74 | (1.5) i|mplies t|
|00001080| 68 61 74 0a 24 24 0a 5c | 69 6e 74 5f 5c 42 62 62 |hat.$$.\|int_\Bbb|
|00001090| 52 5c 44 65 6c 74 61 20 | 75 7a 7c 5e 54 5f 30 64 |R\Delta |uz|^T_0d|
|000010a0| 78 3d 5c 69 6e 74 5f 30 | 5e 54 5c 69 6e 74 5f 5c |x=\int_0|^T\int_\|
|000010b0| 42 62 62 52 0a 5c 44 65 | 6c 74 61 20 75 28 7a 5f |BbbR.\De|lta u(z_|
|000010c0| 74 2b 5c 70 68 69 5b 75 | 2c 75 5e 68 5d 7a 5f 7b |t+\phi[u|,u^h]z_{|
|000010d0| 78 78 7d 29 5c 2c 64 78 | 5c 2c 64 74 2d 0a 45 28 |xx})\,dx|\,dt-.E(|
|000010e0| 75 5e 68 2c 7a 2c 74 29 | 2c 0a 5c 74 61 67 20 32 |u^h,z,t)|,.\tag 2|
|000010f0| 2e 32 0a 24 24 0a 77 68 | 65 72 65 20 24 5c 44 65 |.2.$$.wh|ere $\De|
|00001100| 6c 74 61 20 75 3d 75 2d | 75 5e 68 24 20 61 6e 64 |lta u=u-|u^h$ and|
|00001110| 20 0a 24 24 0a 5c 70 68 | 69 5b 75 2c 75 5e 68 5d | .$$.\ph|i[u,u^h]|
|00001120| 3d 5c 64 66 72 61 63 7b | 5c 70 68 69 28 75 29 2d |=\dfrac{|\phi(u)-|
|00001130| 5c 70 68 69 28 75 5e 68 | 29 7d 7b 75 2d 75 5e 68 |\phi(u^h|)}{u-u^h|
|00001140| 7d 2e 0a 24 24 0a 45 78 | 74 65 6e 64 20 24 5c 70 |}..$$.Ex|tend $\p|
|00001150| 68 69 5b 75 2c 75 5e 68 | 5d 28 5c 63 64 6f 74 2c |hi[u,u^h|](\cdot,|
|00001160| 74 29 3d 5c 70 68 69 5b | 75 2c 75 5e 68 5d 28 5c |t)=\phi[|u,u^h](\|
|00001170| 63 64 6f 74 2c 30 29 24 | 20 66 6f 72 20 6e 65 67 |cdot,0)$| for neg|
|00001180| 61 74 69 76 65 20 24 74 | 24 2c 20 61 6e 64 0a 24 |ative $t|$, and.$|
|00001190| 5c 70 68 69 5b 75 2c 75 | 5e 68 5d 28 5c 63 64 6f |\phi[u,u|^h](\cdo|
|000011a0| 74 2c 74 29 3d 5c 70 68 | 69 5b 75 2c 75 5e 68 5d |t,t)=\ph|i[u,u^h]|
|000011b0| 28 5c 63 64 6f 74 2c 54 | 29 24 0a 66 6f 72 20 24 |(\cdot,T|)$.for $|
|000011c0| 74 3e 54 24 2e 5c 66 6f | 6f 74 6e 6f 74 65 7b 54 |t>T$.\fo|otnote{T|
|000011d0| 68 69 73 20 69 73 20 61 | 6e 20 6f 62 76 69 6f 75 |his is a|n obviou|
|000011e0| 73 20 70 6c 6f 79 2c 20 | 62 75 74 20 77 65 20 6e |s ploy, |but we n|
|000011f0| 65 65 64 20 61 20 66 6f | 6f 74 6e 6f 74 65 2e 7d |eed a fo|otnote.}|
|00001200| 0a 46 69 78 20 61 20 70 | 6f 69 6e 74 20 24 78 5f |.Fix a p|oint $x_|
|00001210| 30 24 20 61 6e 64 20 61 | 20 6e 75 6d 62 65 72 20 |0$ and a| number |
|00001220| 24 5c 65 70 73 69 6c 6f | 6e 3e 30 24 2e 20 4c 65 |$\epsilo|n>0$. Le|
|00001230| 74 20 24 6a 5f 5c 65 70 | 73 69 6c 6f 6e 24 0a 62 |t $j_\ep|silon$.b|
|00001240| 65 20 61 20 73 6d 6f 6f | 74 68 20 66 75 6e 63 74 |e a smoo|th funct|
|00001250| 69 6f 6e 20 6f 66 20 24 | 78 24 20 77 69 74 68 20 |ion of $|x$ with |
|00001260| 69 6e 74 65 67 72 61 6c | 20 24 31 24 20 61 6e 64 |integral| $1$ and|
|00001270| 20 73 75 70 70 6f 72 74 | 20 69 6e 20 0a 24 5b 2d | support| in .$[-|
|00001280| 5c 65 70 73 69 6c 6f 6e | 2c 5c 65 70 73 69 6c 6f |\epsilon|,\epsilo|
|00001290| 6e 5d 24 2c 0a 61 6e 64 | 20 6c 65 74 20 24 4a 5f |n]$,.and| let $J_|
|000012a0| 5c 64 65 6c 74 61 24 20 | 62 65 20 61 20 73 6d 6f |\delta$ |be a smo|
|000012b0| 6f 74 68 20 66 75 6e 63 | 74 69 6f 6e 20 6f 66 0a |oth func|tion of.|
|000012c0| 24 78 24 20 61 6e 64 20 | 24 74 24 20 77 69 74 68 |$x$ and |$t$ with|
|000012d0| 20 69 6e 74 65 67 72 61 | 6c 20 24 31 24 20 61 6e | integra|l $1$ an|
|000012e0| 64 20 73 75 70 70 6f 72 | 74 20 69 6e 20 0a 24 5b |d suppor|t in .$[|
|000012f0| 2d 5c 64 65 6c 74 61 2c | 5c 64 65 6c 74 61 5d 5c |-\delta,|\delta]\|
|00001300| 74 69 6d 65 73 5b 2d 5c | 64 65 6c 74 61 2c 5c 64 |times[-\|delta,\d|
|00001310| 65 6c 74 61 5d 24 3b 20 | 24 5c 64 65 6c 74 61 24 |elta]$; |$\delta$|
|00001320| 20 61 6e 64 20 24 5c 65 | 70 73 69 6c 6f 6e 24 20 | and $\e|psilon$ |
|00001330| 61 72 65 0a 70 6f 73 69 | 74 69 76 65 20 6e 75 6d |are.posi|tive num|
|00001340| 62 65 72 73 20 74 6f 20 | 62 65 20 73 70 65 63 69 |bers to |be speci|
|00001350| 66 69 65 64 20 6c 61 74 | 65 72 2e 0a 57 65 20 63 |fied lat|er..We c|
|00001360| 68 6f 6f 73 65 20 24 7a | 3d 7a 5e 7b 5c 65 70 73 |hoose $z|=z^{\eps|
|00001370| 69 6c 6f 6e 5c 64 65 6c | 74 61 7d 24 20 74 6f 20 |ilon\del|ta}$ to |
|00001380| 73 61 74 69 73 66 79 0a | 24 24 0a 5c 61 6c 69 67 |satisfy.|$$.\alig|
|00001390| 6e 65 64 0a 20 20 26 7a | 5f 74 2b 28 5c 64 65 6c |ned. &z|_t+(\del|
|000013a0| 74 61 2b 4a 5f 5c 64 65 | 6c 74 61 2a 5c 70 68 69 |ta+J_\de|lta*\phi|
|000013b0| 5b 75 2c 75 5e 68 5d 29 | 7a 5f 7b 78 78 7d 3d 30 |[u,u^h])|z_{xx}=0|
|000013c0| 2c 5c 71 71 75 61 64 20 | 78 5c 69 6e 5c 42 62 62 |,\qquad |x\in\Bbb|
|000013d0| 52 2c 5c 3b 30 5c 6c 65 | 71 20 74 5c 6c 65 71 20 |R,\;0\le|q t\leq |
|000013e0| 54 2c 0a 5c 5c 0a 20 20 | 26 7a 28 78 2c 54 29 3d |T,.\\. |&z(x,T)=|
|000013f0| 6a 5f 5c 65 70 73 69 6c | 6f 6e 28 78 2d 78 5f 30 |j_\epsil|on(x-x_0|
|00001400| 29 2e 0a 5c 65 6e 64 61 | 6c 69 67 6e 65 64 0a 5c |)..\enda|ligned.\|
|00001410| 74 61 67 20 32 2e 33 0a | 24 24 0a 54 68 65 20 63 |tag 2.3.|$$.The c|
|00001420| 6f 6e 63 6c 75 73 69 6f | 6e 20 6f 66 20 74 68 65 |onclusio|n of the|
|00001430| 20 74 68 65 6f 72 65 6d | 20 6e 6f 77 20 66 6f 6c | theorem| now fol|
|00001440| 6c 6f 77 73 20 66 72 6f | 6d 20 28 32 2e 31 29 20 |lows fro|m (2.1) |
|00001450| 61 6e 64 20 74 68 65 20 | 66 61 63 74 20 74 68 61 |and the |fact tha|
|00001460| 74 0a 24 24 0a 7c 6a 5f | 5c 65 70 73 69 6c 6f 6e |t.$$.|j_|\epsilon|
|00001470| 2a 5c 44 65 6c 74 61 20 | 75 28 78 5f 30 2c 74 29 |*\Delta |u(x_0,t)|
|00001480| 2d 5c 44 65 6c 74 61 20 | 75 28 78 5f 30 2c 74 29 |-\Delta |u(x_0,t)|
|00001490| 7c 5c 6c 65 71 20 43 5c | 65 70 73 69 6c 6f 6e 5e ||\leq C\|epsilon^|
|000014a0| 5c 61 6c 70 68 61 2c 0a | 24 24 0a 77 68 69 63 68 |\alpha,.|$$.which|
|000014b0| 20 66 6f 6c 6c 6f 77 73 | 20 66 72 6f 6d 20 20 41 | follows| from A|
|000014c0| 73 73 75 6d 70 74 69 6f | 6e 20 32 2e 5c 71 65 64 |ssumptio|n 2.\qed|
|000014d0| 0a 5c 65 6e 64 64 65 6d | 6f 0a 5c 52 65 66 73 0a |.\enddem|o.\Refs.|
|000014e0| 5c 72 65 66 20 0a 20 20 | 5c 6e 6f 20 31 0a 20 20 |\ref . |\no 1. |
|000014f0| 5c 62 79 20 4b 2e 20 48 | 6f 6c 6c 69 67 20 61 6e |\by K. H|ollig an|
|00001500| 64 20 4d 2e 20 50 69 6c | 61 6e 74 0a 20 20 5c 70 |d M. Pil|ant. \p|
|00001510| 61 70 65 72 20 52 65 67 | 75 6c 61 72 69 74 79 20 |aper Reg|ularity |
|00001520| 6f 66 20 74 68 65 20 66 | 72 65 65 20 62 6f 75 6e |of the f|ree boun|
|00001530| 64 61 72 79 20 66 6f 72 | 20 74 68 65 20 70 6f 72 |dary for| the por|
|00001540| 6f 75 73 20 6d 65 64 69 | 75 6d 20 65 71 75 61 74 |ous medi|um equat|
|00001550| 69 6f 6e 0a 20 20 5c 70 | 61 70 65 72 69 6e 66 6f |ion. \p|aperinfo|
|00001560| 20 4d 52 43 20 54 65 63 | 68 2e 20 52 65 70 2e 20 | MRC Tec|h. Rep. |
|00001570| 32 37 34 32 0a 5c 65 6e | 64 72 65 66 0a 5c 72 65 |2742.\en|dref.\re|
|00001580| 66 20 0a 20 20 5c 6e 6f | 20 32 0a 20 20 5c 62 79 |f . \no| 2. \by|
|00001590| 20 4a 2e 20 4a 65 72 6f | 6d 65 0a 20 20 5c 62 6f | J. Jero|me. \bo|
|000015a0| 6f 6b 20 41 70 70 72 6f | 78 69 6d 61 74 69 6f 6e |ok Appro|ximation|
|000015b0| 20 6f 66 20 4e 6f 6e 6c | 69 6e 65 61 72 20 45 76 | of Nonl|inear Ev|
|000015c0| 6f 6c 75 74 69 6f 6e 20 | 53 79 73 74 65 6d 73 20 |olution |Systems |
|000015d0| 0a 20 20 5c 70 75 62 6c | 20 41 63 61 64 65 6d 69 |. \publ| Academi|
|000015e0| 63 20 50 72 65 73 73 20 | 0a 20 20 5c 70 75 62 6c |c Press |. \publ|
|000015f0| 61 64 64 72 20 4e 65 77 | 20 59 6f 72 6b 20 0a 20 |addr New| York . |
|00001600| 20 5c 79 72 20 31 39 38 | 33 0a 5c 65 6e 64 72 65 | \yr 198|3.\endre|
|00001610| 66 0a 5c 72 65 66 0a 20 | 20 5c 6e 6f 20 33 0a 20 |f.\ref. | \no 3. |
|00001620| 20 5c 6d 61 6e 79 62 79 | 20 52 2e 20 4a 2e 20 4c | \manyby| R. J. L|
|00001630| 65 56 65 71 75 65 0a 20 | 20 5c 70 61 70 65 72 20 |eVeque. | \paper |
|00001640| 43 6f 6e 76 65 72 67 65 | 6e 63 65 20 6f 66 20 61 |Converge|nce of a|
|00001650| 20 6c 61 72 67 65 20 74 | 69 6d 65 20 73 74 65 70 | large t|ime step|
|00001660| 20 67 65 6e 65 72 61 6c | 69 7a 61 74 69 6f 6e 20 | general|ization |
|00001670| 6f 66 20 47 6f 64 75 6e | 6f 76 27 73 20 6d 65 74 |of Godun|ov's met|
|00001680| 68 6f 64 20 0a 20 20 20 | 20 20 20 20 20 20 66 6f |hod . | fo|
|00001690| 72 20 63 6f 6e 73 65 72 | 76 61 74 69 6f 6e 20 6c |r conser|vation l|
|000016a0| 61 77 73 0a 20 20 5c 6a | 6f 75 72 20 43 6f 6d 6d |aws. \j|our Comm|
|000016b0| 2e 20 50 75 72 65 20 41 | 70 70 6c 2e 20 4d 61 74 |. Pure A|ppl. Mat|
|000016c0| 68 2e 0a 20 20 5c 76 6f | 6c 20 33 37 20 0a 20 20 |h.. \vo|l 37 . |
|000016d0| 5c 79 72 20 31 39 38 34 | 0a 20 20 5c 70 61 67 65 |\yr 1984|. \page|
|000016e0| 73 20 34 36 33 2d 2d 34 | 37 38 0a 5c 65 6e 64 72 |s 463--4|78.\endr|
|000016f0| 65 66 0a 5c 72 65 66 0a | 20 20 5c 6e 6f 20 34 0a |ef.\ref.| \no 4.|
|00001700| 20 20 5c 62 79 73 61 6d | 65 0a 20 20 5c 70 61 70 | \bysam|e. \pap|
|00001710| 65 72 20 41 20 6c 61 72 | 67 65 20 74 69 6d 65 20 |er A lar|ge time |
|00001720| 73 74 65 70 20 67 65 6e | 65 72 61 6c 69 7a 61 74 |step gen|eralizat|
|00001730| 69 6f 6e 20 6f 66 20 47 | 6f 64 75 6e 6f 76 27 73 |ion of G|odunov's|
|00001740| 20 6d 65 74 68 6f 64 20 | 66 6f 72 20 73 79 73 74 | method |for syst|
|00001750| 65 6d 73 0a 20 20 20 20 | 20 20 20 20 20 6f 66 20 |ems. | of |
|00001760| 63 6f 6e 73 65 72 76 61 | 74 69 6f 6e 20 6c 61 77 |conserva|tion law|
|00001770| 73 0a 20 20 5c 6a 6f 75 | 72 0a 20 20 5c 74 6f 61 |s. \jou|r. \toa|
|00001780| 70 70 65 61 72 0a 5c 65 | 6e 64 72 65 66 0a 5c 72 |ppear.\e|ndref.\r|
|00001790| 65 66 20 0a 20 20 5c 6e | 6f 20 35 0a 20 20 5c 62 |ef . \n|o 5. \b|
|000017a0| 79 20 42 2e 20 4a 2e 20 | 4c 75 63 69 65 72 0a 20 |y B. J. |Lucier. |
|000017b0| 20 5c 70 61 70 65 72 20 | 4f 6e 20 6e 6f 6e 6c 6f | \paper |On nonlo|
|000017c0| 63 61 6c 20 6d 6f 6e 6f | 74 6f 6e 65 20 64 69 66 |cal mono|tone dif|
|000017d0| 66 65 72 65 6e 63 65 20 | 6d 65 74 68 6f 64 73 20 |ference |methods |
|000017e0| 66 6f 72 20 73 63 61 6c | 61 72 20 63 6f 6e 73 65 |for scal|ar conse|
|000017f0| 72 76 61 74 69 6f 6e 20 | 6c 61 77 73 0a 20 20 5c |rvation |laws. \|
|00001800| 6a 6f 75 72 20 4d 61 74 | 68 2e 20 43 6f 6d 70 2e |jour Mat|h. Comp.|
|00001810| 0a 20 20 5c 76 6f 6c 20 | 34 37 0a 20 20 5c 79 72 |. \vol |47. \yr|
|00001820| 20 31 39 38 36 0a 20 20 | 5c 70 61 67 65 73 20 31 | 1986. |\pages 1|
|00001830| 39 2d 2d 33 36 0a 5c 65 | 6e 64 72 65 66 0a 5c 65 |9--36.\e|ndref.\e|
|00001840| 6e 64 64 6f 63 75 6d 65 | 6e 74 0a |nddocume|nt. |
+--------+-------------------------+-------------------------+--------+--------+